

Национальная Академия Наук Украины

Институт общей и неорганической химии им. В.И. Вернадского

Методы формирования проводимости и адсорбционной активности (спирты, кетоны) наноструктурированных плёнок SnO₂

Э.В.Панов

Структура доклада:

- Мотивация выбора d-SnO₂ как электродного и сенсорного материала,
- Синтез в солевых расплавах, структура, свойства (физ., хим. и функц.) d-SnO₂
- d-SnO2 как сенсорный материал
- Ионисторы с электродами SnO₂ (эффект электролита и допанта)
- SnO₂ как электродный материал.

Мотивация выбора альтернативного УГМ материала – d-SnO₂ (d= Sb, Bi, Pb, Cu, Fe, Co, V, Nb и др., Pt, Pd)

- Синтез нанокристаллического (5-20 нм) d-SnO₂ с модифицированной поверхностью.
- Направленное изменение размера, фазового, хим. состава и дефектности структуры поверхности, электропроводности.
- Направленное формирование структуры межфазной границы.
- Коррозионная стойкость, в т.ч. при высоких анодных потенциалах.

Синтез в расплавленных нитратах допированных диоксидов олова

-уменьшение температуры и времени синтеза,

-облегчение образования твердых растворов с допантом и их гомогенность,

-получение фаз с заданными размером зерна и структурой,
-создание тонкого поверхностного слоя на зерне с заданными составом и свойствами

-особенности синтеза в расплавах солей:

высокая растворимость прекурсоров и низкая продуктов синтеза, высокая концентрация реагентов, высокая скорость взаимодействия, предельно высокое пересыщение расплава продуктом, спонтанное образование большого количества зародышей, малая скорость роста кристаллов

Отмывка и выделение порошка (SnO₂)_n-OH из реакционной смеси (центрифугирование, электрофорез), сушка порошка

Синтез оксидов олова с модифицированной поверхностью.

Реакция гидролиза в объёме	(1)
$CoAc_2+H_2O \leftrightarrow Co(OH)Ac+HAc$	
Образование кислотного центра	(2)
$(SnO_2)_n$ -OH \leftrightarrow $(SnO_2)_n$ -O ⁻ +H ⁺	
Реакция гидролиза на кислотных центрах	(3)
$(SnO_2)_n$ -OH + CoAc ₂ \leftrightarrow $(SnO_2)_n$ -OCoAc +HAc	
$(SnO_2)_n$ -O-CoAc + H ₂ O \rightarrow $(SnO_2)_n$ -OCoOH +HAc \uparrow	(4)
$(SnO_2)_n$ -OCoOH \rightarrow $(SnO_2)_n$ -OCoO _{0,5} +0,5H ₂ O↑	(5)
Введение в оксидную матрицу палладия PdCl ₂ (SnO ₂)+ 2NH ₃ OHCl \rightarrow Pd (SnO ₂) + N ₂ \uparrow + 4HCl+2H ₂ O	(6)

Характеризация продуктов синтеза

6

и результаты зондового анализа из указанных на рисунке точек.

7

Рентгеновская дифрактограмма порошка $Sn_{0.97}Sb_{0.03}O_2$. Средний размер кристаллита = 5,09 нм; CuK_{α}- излучение

Рис.1 Профиль рефлекса 110 каситерита при PbO 1,5 ; 3 и 6 мол%.

Рис.2 Влияние содержания допанта (NiO; Bi_2O_3 ; PbO) на размер частиц SnO₂

Влияние допирования SnO₂--7% Ві (функциональные группы)

Для определения состояния поверхности, корреляции между различными видами адсорбированной воды и гидроксильными группами были проведены ИК и ЯМР спектроскопии.

Данные ИК и ЯМР указывают на присутствие воды во всех тестируемых образцах даже при температурной обработке 350°С.

Сигналы, как ИК так и ЯМР для всех образцов - широкие и имеют четкую форму.

Электронный парамагнитный резонанс образца SnO₂, допированного Bi

Все образцы SnO2, допированного Ві независимо от содержания Ві и финальной термической обработки имеют ЭПР-сигнал. В то время как индивидуальные оксиды его не имеют.

10

Повышение содержания Ві приводит к увеличению интенсивности сигнала.

Более того, условия финальной термообработки еще более увеличивает интенсивность ЭПР- сигнала.

Мы объясняем этот ЭПР сигнал переходом электрона на кислородную вакансию в паре с Ві катионом.

Термическая обработка образца приводит к перестройке электронов с поверхности частиц в кислородные вакансии.

Функциональные свойства продуктов синтеза. Энергия активации электропроводности

1	1
	1
_	

₽	Пленка: №, состав (допант, ат.%)	Размер частиц , нм	Чувствительно сть к парам этанола (329 мкг/л) S=I/ Io	Энергия активации, eV
1	46, SnO ₂ +2%Bi ₂ O ₃	11,7	1,2	0,50
2	67, SnO ₂ +5% PbO (120 °C)	12,0	8	0,33
3	64, SnO ₂ +5% PbO (350 °C)	19,0	13	0,66
4	80, SnO ₂ +8% CuO	6,2	4,9	0,16
5	45, SnO ₂ +5%Fe ₂ O ₃ воздух	14,0	4,6	0,62
6	45, SnO ₂ +5%Fe ₂ O ₃ вакуум	14,0		0,90
7	50, SnO ₂ +10% MoO ₃	20,0	3,4	0,19

Графики Аррениуса для SnO_2 (а) допированного Ru SnO_2 (б) в чистом воздухе и в воздухе, содержащем 0,1; 0,5; 1% CH₄. Микроструктура и форма потенциального барьера при адсорбции кислорода воздуха и газавосстановителя (в)

Механизм переноса заряда в плёнке SnO₂

Схемы переноса заряда в нанокристаллической ${\rm SnO}_2$ — плёнке, соответствующие им электрические эквивалентные схемы и годограф импеданса

Модуль импеданса как функция частоты для частиц размером 10, 15, 20 нм, 150 °C.

Зависимость формы годографа переноса заряда в плёнке SnO₂ от размера частиц

Годографы импеданса для частиц SnO₂ 20 нм (а) и 180 и 200 °C; то же для частиц 10 нм /15 нм /20 нм при 150 °C (б).

Энергия активации электропроводности плёнок SnO₂ для различных механизмов переноса заряда 16

Графики Аррениуса для процесса переноса заряда через частицы размером 10 нм: (сверху вниз) объём зерна, граница зерна с электродом, межзёренная граница (а); тоже для зерна 20 нм (сверху вниз) объём зерна, межзёренная граница (б).

Методика тестирования допированных плёнок SnO₂

17

А. Стенд: камера (1) с сенсорным элементом (2), нагревателем (4), термопарой (6), регулятором температуры (5); микрошприцом (3); откачивание и напуск газа (7); уплотнительное кольцо (8); стойка (9); цифровой мультиметр UNI-T UT61E (10); компьютер Acer ZG5 (11). **Б и В** – Схемы чувствительных елементов сенсоров

Измерение электропроводности d-SnO₂-образцов

18

Портативная система для экспресс-анализа паров ацетона и этанола в воздухе:

1 - газовый сенсор с чувствительным элементом (Pt+Pd):Sn_{0.97}Sb_{0.03}O₂;

2- цифровой мультиметр UT 61 E; 3 - Lenovo Idea Pad S10-3

Газовая чувствительность сенсорных элементов на основе модифицированного нано-SnO₂

Ионисторы с электродами из d-SnO₂

ЦВА симметричного ионистора $Sn_{0.95}Sb_{0.05}O_2$; электролит: — - 0,5M H_2SO_4 , — - H_3PO_4 , — - LiOH; v= 20мB/c;

Ионисторы с электродами из d-SnO₂

23

«Время жизни » ионистора Sn_{0,96}Nb_{0,04}O₂; 1М KCl; v= 10мВ/c; — - 1-й цикл, ●● — 100-й цикл.

Зависимость потенциалов пика восстановления Е_{рс} от логарифма скорости развертки потенциала lnv.

Значение кинетических параметров для электрода из допированного диоксида олова

α	kº, см/с	$i_0, A/cm^2$	Е _{рівнов.} , В	D
0,45	2,2·10 ⁻⁴ ;	4,75 ·10 ⁻⁴	0,278	1,56 · 10 ⁻⁷
0.49*	6,6 10-2 *	3,0 10-2 *	0,253 *	0,76 · 10-5*

*- лит. данные приведенные для Pt-электрода (vs. Ag/AgCl в 1М КС1)[3,6].

I-Е кривые электрода SnO₂ (Cu, Sb) в растворе 1М КСl +10⁻²М [Fe(CN)₆]^{3-/4-} v (B/c): 0,005 (1); 0,01 (2); 0,02 (3); 0,05 (4).

ЦВА селективных SnO₂ электродов, 0,5М KNO₃ + 1·10-3 моль/л C₆H₅OH; v=10мB/с. Электрод сравнения Ag/AgCl

Итоги

- В расплавленных солях синтезированы нанокристаллические (5-10 нм) фазы SnO₂: M (M=оксиды Sb, Bi, Pb, Cu, Fe, Co, Mo и др. и Pt, Pd).
- Состав, структуру и свойства поверхности SnO₂ (функц. группы, фазов. состав, дефектность, пористость, электропроводность) можно направленно изменять в процессе синтеза электродного материала в солевом расплаве..
- Условия синтеза SnO₂:M, размер частиц, тип допанта определяют соотношение электронной (доминирует) и ионной проводимости электродного материала.
- Указанные факторы, влияющие на состав и структуру поверхности SnO₂, формируют строение межфазной границы SnO₂/электролит и, соответственно, межфазную ёмкость.
- Показана работоспособность электрода на основе допированного нано-SnO₂, полученного по пленочной и керамической технологиям.
- Электрофизические свойства поверхности SnO₂: M, ответственны за время, селективность и величину отклика сенсора (на основе модифицированных плёнок SnO₂: M) на пары простых спиртов и кетонов.