Виїзна сесія Наукової ради НАН України з проблеми "Електрохімія"

м.Івано-Франківськ, 2013

Алушта - 2007 р.

Алушта - 2009 р.

ВІД ГАЛЬВАНОХІМІІЧНИХ ПЕЛЮШОК ДО ЕЛЕКТРОХІМІЧНОГО ДИЗАЙНУ

д.т.н. проф. Сахненко М. Д., д.т.н. проф. Ведь М. В. проф. Лунарска Е., к.т.н.Никифоров К., ІФХ ПАН, к.т.н. Байрачна Т., ПСУ, США

Так планувалась доповідь

"Електрохімічна кінетика вийшла з полярографічних пелюшок…"

Я. ГЕЙРОВСКИЙ

ТЕОРИЯ И ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ

Специально переработано и дополнено автором для русского издания Перевод Е. Н. ВАРАСОВОЙ

> ОНТИ — ХИМТЕОРЕТ ЛЕНИНГРАД 1937

 Кольрауша
 91

 Глава шестая. Электродвижущія силы
 110

 Глава седьмая. Начатки технической электрохиміи.
 148

 Глава восьмая. Ванть-Гоффъ и Арреніусъ
 165

 Глава девятая. Ученіс о свободныхъ іонахъ.
 187

 Глава десятая. Современная электрохимическая про

ВИТОКИ

ЭЛЕКТРОХИМИЯ

ПРОШЕДШИЕ ТРИДЦАТЬ И БУДУЩИЕ ТРИДЦАТЬ ЛЕТ

Історичний аспект: гальванохімія

НАСТУПНИЙ ЕТАП : КОРОЗІЯ МЕТАЛІВ -РУЙНУВАННЯ ТА ТВОРЧІСТЬ

ЕЛЕКТРОКАТАЛІТИЧНІ СИСТЕМИ

ВИБІР СПЛАВОТВІРНИХ КОМПОНЕНТІВ
 ЕЛЕКТРООСАДЖЕННЯ
 ТЕСТУВАННЯ ВЛАСТИВОСТЕЙ

ВИБІР СПЛАВОТВІРНИХ КОМПОНЕНТІВ

- Адитивні сплави Pd-Ni, Co-Fe
- Синергетичні сплави Со-W, Co-Ag, Ni-W, Ni-Cu

Густина струму обміну водню залежно від різниці енергій зв'язків "metal-H" та "metal-O"

Загальна схема електрокристалізації сплавів Cu(Pd)-Ni

$$(a) \rightarrow [M^{(1)}(L_{1})_{x}(L_{2})_{y}] \xrightarrow{V_{d}} [M^{(1)}(L_{1})_{x}(L_{2})_{y}] \xrightarrow{k_{f_{1}}} [M^{(1)}(L_{1})_{x}] + yL_{2} \xrightarrow{k_{g_{1}}} M^{(1)}_{ad} \xrightarrow{V_{dg}} [M^{(1)}]_{cl}$$

$$(h_{1}) = \{P_{2}O_{7}^{4} \xrightarrow{H^{+}} HP_{2}O_{7}^{3} \xrightarrow{H^{+}} \dots \Rightarrow H_{4}P_{2}O_{7}\}$$

$$(H_{2})_{gas} \xrightarrow{k_{b_{1}}} H_{ad} \xrightarrow{V_{ab}} [M^{(1)} + H]_{cl} \xrightarrow{M^{(1)}-M^{(2)}}_{cl} cl$$

$$(H_{2})_{ad} \xrightarrow{k_{b_{1}}} H_{ad} \xrightarrow{V_{ab}} [M^{(1)} + H]_{cl} \xrightarrow{M^{(1)}-M^{(2)}}_{cl} cl$$

$$(NH_{3})_{qas} \xrightarrow{h_{1}} \\ (L_{2}) \in \{(NH_{3})_{2} \Rightarrow (NH_{3})_{aq} + H_{2}O \Rightarrow NH_{4}^{+} + OH^{-}\}$$

$$(b) \rightarrow [M^{(2)}(L_{1})_{x}(L_{2})_{y}] \xrightarrow{V_{d}} [M^{(2)}(L_{1})_{x}(L_{2})_{y}] \xrightarrow{k_{f_{2}}}_{x=\delta} [M^{(2)}(L_{1})_{x}] + yL_{2} \xrightarrow{k_{g_{2}}} M^{(2)}_{ad} \xrightarrow{M^{(2)}}_{ad} [M^{(2)}]_{cl} \xrightarrow{M^{(2)}}_{cl}$$

Загальна схема кристалізації сплавів Со-Ад

Загальна схема кристалізації сплавів Со(Ni)-W

Вплив режимів електролізу на склад і морфологію покриву Ni-Pd

Вплив рН на склад і морфологію покриву Co-W

Вплив рН на склад і морфологію покриву Co-W

Вплив густини струму на склад і морфологію покриву Co-Ag

Атомно-силова мікроскопія: структура поверхні покриву Co-W

Атомно-силова мікроскопія: структура поверхні покриву Ni-W

Атомно-силова мікроскопія: структура поверхні покриву Со-Ад

Корозійна стійкість і каталітична активність у реакції виділення водню (1 $M Na_2 SO_4$, 0,01 $M H_2 SO_4$)

Корозійна стійкість і каталітична активність у реакції виділення водню (1 $M Na_2 SO_4$, 0,01 $M H_2 SO_4$)

Корозійна стійкість і каталітична активність у реакції виділення водню (1 М Na₂SO₄, 0,01 М NaOH)

Температура запалення $CO \rightarrow CO_2$

- Pt catalyst (ω_{Pt})=100 % 475-480 K;
- Ag-Co alloy (ω_{Ag})=15 % 510-515 K

Каталітичні покриви Со-W для нейтралізаторів викидів ДВЗ

Каталітичні покриви Ni-W для нейтралізаторів викидів ДВЗ

КАТАЛІТИЧНІ НЕЙТРАЛІЗАТОРИ

Угадай страну по фотографии

Методи переробки вольфрамвмісної вторинної сировини

Мікрофотографії (×3000) та склад поверхні ВК10

Мікрофотографії (×3000) поверхні ВК10 після анодної обробки

Схема рециклінгу псевдосплавів вольфраму

Властивості покривів W24Co75Fe1

Мікротвердість $H_v = 480 - 500;$ Розмір зерен 50 – 60 нм асоціатів - 500 - 600 нм; Магнітні характеристики: коерцитивна сила Н_с=150 Е, намагніченість насичення σ_s = 80 Гс-см³-г⁻¹, залишкова намагніченість о_в=38 Гс-см³-г-1 (магнітом'який матеріал) Каталітичні властивості: температура реакції окиснення бензолу на сплаві W24Co75Fe1 543 К, на контактах шамот-Pt 639 K

10

TITANUM OXIDE FILMS ELECTROCHEMICAL DESIGN

MICROARC OXIDATION

BIOMATERIALS FOR IMPLANTS

For implants, Ti with oxide layer should exhibit:

- high hardness → presence of Co, Mn
- good wear & corrosion resistance
- low friction → proper structure
- porosity → proper structure
- good compatibility to the body tissues
- presence of P (Ti₃P, Ti(HPO₄)₂xnH₂, P₂O₅) formation of hydroxyapatite

Promising method is the microarc-anodic treatment

LAYER FORMATION by MICROARC

<u>substrate:</u> Ti (Fe+Si+Al+Mn < 1 wt %) <u>microarc-anodic treatment:</u> application of constant current →to sparkling

LAYER FORMATION AT MICROARC TREATMENT

deposition of *in plasma* formed species on the surface

S-3400N 25.0kV 10.7mm x3.50k SE

10.0um

increase in deposite thickness

FORMATION PARAMETERS

- Ti anode
- graphite cathode (30 mm interelectrode distance)
- alkaline polyphosphate solution
- addition of Co, Mn containing species

Specimen code	Interelectrode voltage U, V	Addition element
Ti-S	<100	-
Ti-1	110	-
Ti-3	120	Со
Ti-5	125	Mn
Ti-7	130	Mn

LAYERS CHARACTERIZATION

- SEM (10,000x) \rightarrow layer topography and structure
- GDOS
- *EDS* analyzer \rightarrow surface chemical composition
 - \rightarrow destribution of elemens in layer thickness
- X-ray analysis \rightarrow phase composition
- Bending

- \rightarrow brittle or ductile **fracture**
- \rightarrow adhesion

APPEARANCE of MODIFIED SURFACE

round grains with holes (doughnut, tire like) + mixture of fine acicular grains

good sliding ability

APPEARANCE of MODIFIED SURFACE

structure of surface layer depends on interelectrode voltage

LAYER DEPTH & GRAIN SIZE

vs. interelectrode voltage

CHEMICAL COMPOSITION of SURFACE

* Uniform color of backscattering electrone image reveals uniform chemical composition of surface

CHEMICAL COMPOSITION of SURFACE

P, K, Co, Mn content vs. voltage

P/Ti ratio vs. voltage

DISTRIBUTION OF ELEMENTS in DEPTH

APPEARANCE of FRACTURE SURFACE

ductile fracture
 • good adhesion
 <u>no splinters to be chipped off</u>
 <u>from implant</u>

CORROSION RESISTANCE vs. VOLTAGE

substantial increase in corrosion resistance

CORROSION RESISTANCE vs. STRUCTURE

Iowest corrosion resistance – Ti-1

S-3400N 25.0kV x3.50k SE

10.0um

Ti-3

Ti-1

highest H absorption by layer of most loose structure

Электроосаждение нанопроволок состава никель-вольфрам

Байрачная Татьяна Николаевна, к.т.н. Стипендиат программы имени Фулбрайта от Украины 2009-2011 Северовосточный университет/Northeastern University College of Engineering Chemical Engineering Department Научный руководитель: Prof. Elizabeth J. Podlaha-Murphy г.Бостон/Boston, Массачусетс

KHARKIV POLYTECHNICAL UNIVERSITY The Unit of education, science, industry

2006-2009 гг. - Полифункциональные электролитические покрытия сплавами вольфрама с кобальтом и никелем

Влияние концентраций сплавообразующих компонентов в электролите на содержание вольфрама (а, в) и Вт (б, г) сплавов Со – W (а, б) и Ni - W (в, г). Режим: jи=12 А/дм2, tи/tп=2/20 (мс). Раствор, М: для а и б - MeSO4, Na2WO4, Cit 0,3, H3BO3 0,3; pH 6,0

Влияние pH электролита на содержание вольфрама (1, 2) и выход по току (3, 4) сплавов Co – W (1, 4) и Ni – W (2, 3). Режим: jи=12 A/дм2, tи/tп=2/20 (мс). Раствор, M: MesO4 0,25, Cit 0,3, H3BO3 0,3, 1, 4 – WO4²⁻ =0,1, 2, 3 – WO4²⁻ =0,25

Подготовка матрицы для электроосаждения

Поликарбонатные мембраны Whatman Радиус 2.5 см Толщина 6 мкм

Плазменное напыление слоя золота для обеспечения электронной проводимости

Внешний вид мембран после напыления слоя золота

Ячейка для осаждения

Ячейка для электроосаждения

Состав электролита:		
Na2WO4 · 2H2O	0.15 M	
NiSO4 · 6H2O	0.10 M	
Na3Cit · 2H2O	0.375 M	
НЗВОЗ	1.00 M	

NaOH/H2SO4 for pH 7.0

Режимы поляризации

Нанонпроволоки после обработки ультразвуком

Taniall08-08 ultrasound.005a.tif Niw nanowires Sample 16 Print Mag: 13600x @ 7.0 in 5:24:22 p 11/08/10

2 microns HV=80.0kV Direct Mag: 2500x AMT Camera System

Осажденные на постоянном токе

Осажденные импульсным током

Нанонпроволоки после обработки ультразвуком

March 9 2011.011 Sample 31 NiW nanowires Print Mag: 21700x @ 7.0 in 500 nm HV=80.0kV Direct Mag: 4000x

Осажденные на постоянном токе

March 9 2011_008 Sample 13 NiW nanowires Print Mag: 32600x @ 7.0 in

500 nm HV=80.0kV Direct Mag: 6000x

Осажденные импульсным током

